

جامعة إربد الأهليه IRBID NATIONAL UNIVERSITY

Course Description: Software Engineering

Course Name:	Introduction to IT			Course Code:	409100				
Hours:	Credit	Theoretical	Practical	Pre-Requisite:					
	3	3	0						
This course gives the basic concepts of computers and information technology, both physical and programmatic, and									
includes: an introduction	to physical	and programma	atic compute	r components, counting syste	ems, and methods of data				
representation. Stages of	software of	development, a	oplication sc	ftware and system software,	, focusing on foundations				
and methods of problem	n solving a	nd algorithm de	esign. Introd	luction to C ++ programmin	g language and includes				
program structure in C ++ language, basic data types, arithmetic and logical operations, control structures in addition									
to previewing and compile	ing softwa	re							

Course Name:	Computer Skill (2)			Course Code:	401112			
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	401099			
	3	3 3 1						
This course covers the b	asic conce	pts of a progra	amming lang	uage using C++ and include	s Development of major			
programming languages.	Descriptio	n of sentence s	tructure and	their implications, analysis c	of sentence structure and			
construction, names of variables, and includes linking, verification of type and sphere of influence. Data types,								
expressions, data referen	expressions, data references and control sentence structures.							

Course Name:	Programming Language (1)			Course Code:	407212			
Hours:	Credit	Credit Theoretical Practical P		Pre-Requisite:	401112			
	3	3	1					
The basic skills of writing and debugging code using a common programming language (e.g., the C++ or Java programming								

language), an integrated development environment (IDE) (e.g., MS Visual (VC++) development studio), data types, arithmetic and conditional operators, control structures, functions, parameter passing by value and by reference and arrays

Course Name:	Calculus (1)		Course Code:	404101				
Hours:	Credit	Theoretical	Practical	Pre-Requisite:				
	3	3	0					
Functions: domain, operations on functions, graphs of functions, trigonometric, inverse, logarithmic and exponential								
functions; inverse trigonor	metric fund	ctions; continuit	y limits. Der	ivative: differentiation techn	iques, chain rule, implicit			
differentiation; the differe	nces. Rolle	's Theory, Key V	alue Theory	; increasing and decreasing j	obs; concavity; Maximum			
and minimum function values, graphs including Boolean functions; Indefinite integral. Fundamental Theorem of Calculus.								
Integration by substitution	. The area	between the cu	rve and the	x-axis.				

Course Name:	Statistics & Probability (1)		Course Code:	404131				
Hours:	Credit	Theoretical	Practical	Pre-Requisite:				
	3	3	0					
This course will include descriptive statistics, probability, Axioms of probability, rules of probability, conditional								
probability, independence	e. Discrete	and continuou	s random v	variables, expectations, and	probability distributions.			
Sampling distributions t, C	hi square,	F, CLT distributi	ons. Score e	stimation: for mean and vari	ance, difference between			
two means and percentage of variances, hypothesis testing for small, large, and dependent samples, correlation, simple								
and multiple linear regress	ion. Qualit	y of fit tests.						

Course Name:	Modeling & Simulation		Course Code:	401452			
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	404131		
	3	3	0				
This course discusses diffe	erent topic	s in simulation	and modelin	g, such as the uses, advanta	ges and disadvantages of		
simulation, types of mode	ls, the step	os in discrete-ev	vent system	simulation, statistical models	s, simple queuing models,		
random numbers and random variates, input modeling, model verification and validation, and its use in input-output							
analysis. Sample implement	ntations for	r queuing system	n simulation	s are discussed using selected	l languages.		

Course Name:	Programming Languages Design & Implementation			Course Code:	401452		
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	407212		
	3	3	0				
This course will acquaint t	he student	: with the funda	mental idea	s surrounding the design and	d implementation of high-		
level programming langua	ges.						
The course will stress unde	The course will stress underlying theoretical concepts as well as a significant, practical course project. At the same time,						
the course will focus on m	aking this r	naterial accessib	ole to studer	nts of varied backgrounds.			

Course Name:	Graph Theory			Course Code:	404463			
Hours:	Credit Theoretical Practical Pr		Pre-Requisite: 4042	04241				
	3	3	0					
The course deals with gra	ph theore	ical notions and	d problems,	and the use of algorithms,	both in the mathematical			
theory of graphs and its applications. In the course, the basic theory of graphs of different kinds is developed in detail,								
especially trees and bipart	ite graphs.							

Department requirements: (84 CREDIT HOURS)

Compulsory department requirements: (69 CREDIT HOURS)

Course Name:	Digital Logic Design			Course Code:	401105			
Hours:	Credit	Theoretical	Practical	Pre-Requisite:				
	3	3	0					
Number systems, binary o	odes, Boo	lean algebra, ar	nd logic gate	es. Simplification of Boolean	functions. Combinational			
logic: Adders, subtractions, code converters, comparators, encoders, decoders, multiplexers, and ROMs. Sequential logic:								
Flip-Flops, Registers, Coun	Flip-Flops, Registers, Counters, and RAM.							

Course Name:	Linear Algebra (1)			Course Code:	404241
Hours:	Credit Theoretical Practical P		Pre-Requisite:	404101	
	3	3	0		

System of linear equations, matrices, determinants, vector space in the second and third dimensions, non-vector multiplication, vector multiplication, general vector space, subspaces, linear independence, base and dimension, orthogonal basis, (Gram-Smith) operations, base change, linear transformations.

Course Name:	Introduction to Algorithms			Course Code:	401115			
Hours:	Credit Theoretical Practical Pr		Pre-Requisite: 201251	201251				
	3	3	0					
Algorithms, Mathematical	induction	, classifying fur	nctions. Cor	nputational complexity of a	lgorithms. Searching and			
sorting algorithms. Algorithm analysis and design techniques: Divide and conquer greedy methods. Trees and graphs.								
Hashing algorithms. Combi	inatorial al	gorithms. p/Np	problems.					

Course Name	Introduction to Software			Course Code	410120	
Course Name:	Engineer	ring		Course Code: 410	410120	
Hours:	Credit	Credit Theoretical Practical		Pre-Requisite:	407212	
	3	3	0			
This course provides a	general ir	troduction to s	software eng	gineering. It introduces con	cepts such as software	
processes and agile met	hods, and	essential softw	are develop	ment activities, from initial s	specification through to	
system maintenance. For	rmalisms a	nd tools to assis	t in software	development are also prese	nted, including common	
design patterns and UMI	L notation.	There is a focu	s on software	e testing, from unit testing to	the testing of software	
releases. Project management, software security, professional software engineering practice, and IT governance will						
also be covered. Case stu	udies provi	de practical exa	mples for ma	any of these concepts.		

Course Name:	Object Oriented Programming		Course Code:	407212			
Hours:	Credit	Theoretical Practical		Pre-Requisite:	401112		
	3	3	1				
This course introduces the	basic conc	epts of object-o	riented prog	ramming using the Java lang	uage. It includes: The basic		
characteristics of object-	oriented p	programming, w	which includ	e data abstraction, encapsu	lation and data masking,		
inheritance, and multiple	shape tr	ansformations.	The concep	ot of classes, objects, meth	nods of creating objects,		
overloading, and overriding, interfaces, packages, exception handling, program							
programming and introduc	ction to pro	ogramming user	interfaces				

Course Name:	Computer Architecture			Course Code:	401221
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	401105
	3	3	0		
This course introduces the	software a	nd physical com	ponents of c	omputer architecture and inc	ludes computer structures
and their types, instruction	set archite	ecture, computa	tion and logi	c unit, control unit, data trans	smission lines, instructions
and control signals, the hi	erarchical	structure of me	mory instru	ctions, methods of measurin	g computer performance,
improving computer perfo	rmance us	ing technology ⁻	Tubes. Conn	ecting and connecting the in	put and output units with
the central processing unit	•				

Course Name:	Data Structures			Course Code:	401251		
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	407212		
	3	3	1				
This course covers the bas	ic concept	s of data structu	ures and inc	udes abstract data concepts	, describing different data		
structures as abstract data such as: lists, stacks, queues, dictionaries, and tree structures. programming these structures							
in different ways using the	object-ori	ented programn	ning method	the basic concepts for analyz	zing algorithms depending		

on time and capacity for different applications of data structures. This course also covers the technique of self-recall to solve problems and a brief introduction to diagrams.

Course Name:	Operating Systems			Course Code:	401332		
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	401115		
	3	3	0				
This course covers the ba	asic conce	pts of operating	g systems. 7	opics covered: evolution of	operating systems (OS),		
operating system architec	ture, opera	ating system tas	ks, including	managing processing operat	ions and scheduling them		
(time sharing, deadlocks, strategies for managing and protecting storage units, architecture of secondary storage units.							
Distributed systems, mana	iging input	units / Output)					

Course Name:	Database			Course Code:	409252
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	401251
	3	3	1		
This course introduces the	concepts	of databases ar	nd database	management systems and in	cludes an introduction to
the database systems mod	lel relation	al data, includin	g relationsh	ip algebra, relationship differ	entiation, synthetic query
language, database design	methodo	ogies, Entity Re	lationships a	nd Constraints Integrity Con	ditions model, conceptual
database design and funct	ional depe	ndency standard	d formulas a	nd normalization methods.	

Course Name:	Advanced Software Engineering		Course Code:	410255				
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	410120			
	3	3	0					
This course focuses on software engineering for smart, critical, and complex software-intensive systems. The course								
contains four modules. 1)	Requirem	ents specification	on module fo	ocuses on methods to transit	from user requirements			
to high-quality technical r	requireme	nts; 2) Testing r	nanagement	model focuses on testing st	rategies; 3) Code quality			
module focuses on code a	nalysis, co	de review, and c	ode refactor	ing; 4) Complex system modu	le focuses on verification			
and validation of complex	software	systems.						

Course Name:	Software Quality Assurance		Course Code:	410330					
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	410312				
	3	3	0						
This course will delve in	This course will delve into various software quality topics. The course takes a holistic view of software quality								
considering both building	the right	software and b	uilding the s	oftware right. First, to learn	about building the right				
software we will focus o	n understa	anding software	e requiremen	nts elicitation, specification,	analysis, validation, and				
verification. Next, the course considers building the software right with a focus on code quality and software testing.									
In addition, we will cover	important	tools to aid in n	naintaining s	oftware quality like version c	ontrol and bug trackers.				

Course Name:	Web Appl	ication Program	iming	Course Code:	407356
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	410232
	3	3	1		
This course covers the the	oretical and	d practical conce	epts of web p	programming and includes the	e Study of static hypertext
markup language Dynamie	c, JavaScrip	ot, PHP Script, A	pplication a	nd page Frames, Web Forms	s, Controls and Validation
Home pages, data linking,	and server	computer techn	ology, inclu	ding practical applications usi	ng the Active Server Pages
language in a .Net environ	ment and o	lealing with data	abases using	ADO.Net technology	

Course Name:	Visual Programming			Course Code:	410232
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	407212
	3	3	1		
This course introduces the	concepts	of the visual pro	ogramming e	environment and the charact	eristics of object-oriented
programming. It includes	a Study of	Microsoft Data	net techno	ogy platforms, which include	e: the architecture of this
technology, the languages	used in it,	the library The	standard bo	orn net, the virtual machine f	for running programs, the
way projects work, their tr	anslation a	nd implementat	ion. C# inclu	ides the following main topics	: integrated development
environment, user interfa	ace design	, control tools,	Event han	dling, control structures, fu	nctions, classes, objects,
exception handling, graphi	cs, and ins	tructions for har	ndling Files.		

Course Name:	Database Management Systems			Course Code:	410345		
Hours:	Credit Theoretical Practical Pr		Pre-Requisite: 409252	409252			
	3	3	0				
The course aims at advance	ced topics	in database syst	ems, ideas a	bout the relational model fo	r many types of database		
technology aspects such	as SQL, da	atabase optimiz	ation, distri	buted database processing	and vision support, data		
protection problems, concepts about data retrieval, parallel data processing, data security and integrity Data, object-							
oriented databases, introd	uction to c	latabase manag	ement, stan	dardization, data design, and	data mining.		

Course Name:	Human-Computer Interaction			Course Code:	410216
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	410232
	3	3	0		

Designing practical, effective, and enjoyable computer interfaces is a skill used by system architects who study humancomputer interaction. This course covers the theory, design process, and programming concepts that underlie successful human-computer interaction. The design, implementation, and evaluation of interactions are topics that the students learn about well. Understanding the theory underlying effective human-computer interaction and the accepted practices for good user interface design, such as the "usability" process, are essential for the design process. This process includes iterative evaluation, which we will learn and put into practice using case studies that are based on scenarios. Students will put their newly acquired skills to use in a variety of real-world assignments to design effective user interfaces.

Course Name:	Requirement Engineering			Course Code:	410312		
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	410255		
	3	3	0				
Requirements engineering	is one of t	he least unders	tood and hai	dest phases in the developm	nent of software products,		
mainly because requireme	ents are of	ten unclear in t	he minds of	most stakeholders. This cou	rse deals with identifying		
stakeholders, eliciting and	stakeholders, eliciting and verifying requirements from them, and translating into detailed requirements for a new						
software product, analysis	, and mode	eling of requirer	nents. The fi	rst steps in the direction of so	oftware design and quality		

assurance aspects of the software requirements phase of the software development process.

Course Name:	Software testing			Course Code:	410423		
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	410405		
	3	3	1				
The focus of this course wi	ll be on sc	ftware testing.	A variety of	test techniques will be cover	ed along with applicability		
aspects as well as the bindi	ngs on sof	tware reliability	modeling. Th	ne course includes Introductio	on to Software Verification		
and Validation, Software	Testing Ov	verview and Cla	ssifications,	Functional (black box) Testi	ng, Structural (white box)		
Testing, Integration Testin	ig, Mutati	on Testing, Mo	del-based Te	esting, and Test case generation	ation, Software Reliability		
Modeling together with bir	ndings on t	esting, Overviev	v of the testi	ng process, testing tools, and	automation. The contents		
will reflect the latest resear	will reflect the latest research topics as well as industrial practices. Guest lectures by industrial experts will be the highlight						
of this course.							

Course Name:	Design & Analysis of Information			Course Code:	410432	
	Systems					
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	409251	
	3	3	0			
This course gives an overv	iew of the	general stages	of developin	ng information systems (the	software development life	
cycle), which include: pr	eparing fe	easibility studie	s, methods	of collecting information	on system requirements	
(interviews, questionnaire	es, observa	ation and partion	cipation in	Application design), require	ments analysis using the	
synthetic method (data	flow diagr	ams, data dicti	onary), Sys	tem design procedures, inc	luding: design of system	
architecture, design of input processes and output forms, design of interfaces Conversation with the user and database						
design. The course will dea	al with imp	lementation, so	ftware testii	ng, technical support, and ma	intenance software.	

Course Name:	Computer-Aided Software Engineering (CASE TOOLs)			Course Code:	410335	
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	409255	
	3	3	0			
The aim of the module is	to develop	o an understand	ling of and g	gain experience with the bas	ic techniques of software	
engineering with the help	of compu	ter-aided softwa	are. The cou	rse provides an introduction	to life cycle models, and	
various casework benches used in an integrated environment followed by hands-on experience on CASE TOOLS. Also,						
techniques for developing	CASE tools	that match the	needs of so	ftware engineers will be addr	essed.	

Course Name:	Software documentation		Course Code:	410420				
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	410405			
	3	3	0					
This course provides an introduction to the task-oriented approach used by software engineers to create software								
documentation. Students	will learn	to write softw	are docume	ntation through a structure	d process, including user			
analysis, planning, designi	ng, testing	, and reviewing.	The course	covers various software doc	umentation types, such as			
tutorials, procedures, and reference guides, and teaches students how to write each type effectively. Additionally,								
students will gain proficiency in using tools to produce comprehensive documentation for any software, while adhering								
to standard guidelines and	lemploying	g clear English st	ructures.					

Course Name:	Software construction and Modeling			Course Code:	410405
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	407356
	3	3	0		

This course introduces the students to software modeling and the object-oriented analysis and design process. The course covers the major Unified Modeling Language diagrams including use cases, class diagrams, sequence diagrams, activity diagrams, and deployment diagrams. Furthermore, case studies will be presented to teach the students how to use and apply each UML model in real-life scenarios.

Course Name:	Graduation Project			Course Code:	410442
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	90 Credit Hours
	3	0	0		

This course allows students to demonstrate their intellectual, artistic, and creative abilities by developing a project in one of the fields of Information Technology. The graduation project challenges students to transcend the learning they are learning in their scheduled educational programs. Students will complete their projects in focused fields of study under the guidance and supervision of the faculty. These projects will demonstrate students' ability to: apply, analyze, synthesize, evaluate information, and connect knowledge with understanding.

Course Name:	Practical	Training		Course Code:	410440
Hours:	Credit	redit Theoretical Practical I		Pre-Requisite:	90 Credit Hours
	3	0	0		

This course provides the possibility of training in the use of computer tools and their applications in various fields. Training is conducted in public or private sector institutions under the supervision of the faculty members in the department. The purpose of field training Under the supervision of practical experiences, students assemble the knowledge, experience, and skills presented during the academic part of the program in a practical environment. Field training is a student's learning experience and on-site work contribution. Expected field training to provide learning opportunities that are not available in the classroom.

Elective department requirements: (9 credit hours)

Course Name:	Project Management			Course Code:	410228			
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	410345			
	3	3	0					
This course composes four perspectives of Project Management and Software Project Management. These are the								
Project Management Pers	pective th	at was introdu	ced by the	Institute of Project Manager	ment (PMI), the Software			
Project Management Pers	pective th	at was introduc	ed by the I	EEE Computer Society (IEEE-	CS SWEBOK), the SCRUM			
Software Project Management Perspective that was introduced during the past 15 years or so by different professional								
AGILE-SCRUM bodies (AGIL	E-SCRUM).						

Course Name:	Special topics in software engineering			Course Code:	410309		
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	60 credit hours		
	3	3	0				
A special topics course in s	oftware e	ngineering typic	ally focuses	on specific, advanced areas v	within the broader field of		
software engineering. The	ese courses	s delve into spe	ecialized top	ics that may not be covered	d extensively in a general		
software engineering curriculum. The specific content of a special topics course can vary depending on the instructor,							
student interests, and curr	ent trends	in the industry.					

Course Name:	Formal Methods			Course Code:	410333
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	404152 + 410120
	3	3	0		

This course introduces students to the practical applications of formal methods in the software development process. It covers key topics from the CS2013 Final Report by ACM and the IEEE Computer Society, including the role of formal specification and analysis techniques, program assertion languages, formal software modeling, and analysis methods, as well as tools that support formal methods. The course aims to show how using formal methods, even in a pragmatic way, can lead to the development of high-quality, maintainable software systems while managing development costs effectively.

Course Name:	Reverse software engineering			Course Code:	410344
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	410312
	3	3	0		

This course content enables us to understand the importance of Reverse software engineering, its techniques, and concepts that are used to manage various industrial computer applications/software. Students will be made aware of software engineering concepts, differences between forward and reverse engineering, UML diagrams, rapid prototyping and reverse engineering process. Students will also do case studies of various computer applications/software with the use of UML diagrams, rapid prototyping and reverse engineering processes.

Course Name:	Software Metrics and Standards			Course Code:	410404		
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	410432		
	3	3	0				
Software Metrics is a k	ey area iı	n software eng	gineering th	at focuses on the quantit	ative measurement and		
evaluation of software q	uality, perf	ormance, and c	levelopment	processes. It aims to help s	tudents and professionals		
understand how to assess	various asp	pects of softwar	e systematio	ally to make informed decision	ons and enhance quality.		
Software Standards are a	set of rule	es and guideline	es used to s	tandardize software design,	development, and quality		
assurance processes. Thes	e standard	s ensure that th	e final produ	uct meets predefined quality	benchmarks and complies		
with organizational or industry-wide requirements. They are typically defined by international organizations such as							
ISO (International Organi	zation for	Standardizatior	n) and IEEE (Institute of Electrical and El	ectronics Engineers).		

Supportive department requirements: (6 credit hours)

Course Name:	Discrete Mathematics			Course Code:	404152			
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	409100			
	3	3	0					
This course will include an introduction to logic, hypothetical logic, predicate logic, formal and informal proofs, sets, and								
static operations. Countable and uncountable functions and combinations. Integers and modular arithmetic, sequences,								
aggregates, mathematical	inductior	n, repetition, c	ounting, per	mutations, combinations, p	probability, relationships,			
graphing, and tree theory.								

Course Name:	Networks and Data Communication			Course Code:	407326			
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	45 Credit Hours			
	3	3	0					
This is a first-class on the fundamentals of data communication networks, their architecture and network layers,								
operations principles, transmission protocols, and performance analyses. One goal will be to give some insight into the								
rationale of why networks are structured the way they are today and to understand the issues facing the designers of								
next-generation data networks. Much of the class will focus on network algorithms and their performance.								