	Irbid National University	
A COLORADO	Faculty of	
	Science and Information	Logo of Foculty
	Technology	Logo of Faculty
	Department of	
BUILD SATIONAL UNIVERSITY	Mathematics	

Course No.	Course Title	Designation	Prerequisite	Credit Hours
Math 404151	Fundamentals of Mathematics	Compulsory major	Calculus (1) 404101	3
Course Description	Logic and methods of proof: Statements, algebra of statements, conditionals, logical equivalence, quantifiers, mathematical proofs. Sets: Basic notations and algebra of sets, principle of mathematical induction. Relations: Cartesian product and relations, equivalence relations, partitions. Functions: Functions and relation, one to one functions, onto functions, composition of functions. Number systems: Construction of natural numbers, integers, rational numbers, real numbers, and complex numbers.			
Math 404203	ODEs(1)	Compulsory major	Calculus (2) 404102	3
Course Description	Introduction, Classification of DEs, 1 st order equations: separable, linear, Bernoulli, homogeneous, and exact equations, 2 nd order equations: The methods of undetermined coefficients and variation of parameters, Higher order equations, Euler equation, Series solution of ODEs, Systems of 1 st order ODEs, Applications.			
Math 404301	PDEs(1)	Compulsory major	Math. Methods 404204	3
Course Description		bolic type problems,	order PDEs, Initial and Hyperbolic type problen	-

Math 404401	PDEs(2)	Compulsory major	PDEs(1)	3
Course Description	nonlinear ,The Complete integ	Cauchy proble rals of nonline	DEs into linear, semilinear, q m, General solutions of quasili ear equations, Systems of 1 st o ,Well posedness,Hadamard pro	near equations, rder PDEs, 2 nd

Course No.	Course Title	Designation	Prerequisite	Credit Hours
Math 404204	Math. Methods	Compulsory major	Calculus (3)- 404103 ODEs(1)- 404203	3
Course	Series solution	n of ODEs near ordina	ry and regular singular	points,
Description	Laplace transf	forms, Legendre equat	ion, Sturm- Liouville B	SVP, Fourier
	series			
Math 404403	ODEs(2)	Compulsory major	ODEs(1) 404203	3
Course Description	Systems of first order ordinary differential equations: homogeneous and nonhomogeneous systems, Existence Theory: gronwall inequality, Uniquence Theorem, Autonomous systems: Phase plane and phase portrait, stability of linear and almost linear systems			
	po	ortrait, stability of linea	r and almost linear syst	ems

Course No.	Course Title	Designation	Prerequisite	Credit Hours
Math 404102	Calculus 2	Compulsory major	Calculus 1	3
Course Description	hyperbolic fur integrals, trigo expressions, go Improper inte convergence to	d Taylor series. Polar co	ntegration, by parts, tri , partial fractions, quad merical Integration (Sy nvergence, and diverge	gonometric ratic mpson's rule). nce,

Math 404312	Complex analysis (1)	Compulsor major	У	Calculus 3	3
Course Description	In this course, we introduce the following topics: The structure of complex numbers (modulus, conjugate, polar form, roots, regions). Complex valued functions. (examples, limits, continuity). The derivative of a complex valued function. Formulas for differentiation. Cauchy - Riemann equations. Analytic functions (definition and basic properties). Harmonic functions (definition and basic properties). Elementary complex valued functions (definition and basic properties). Elementary complex valued functions (exponential, trigonometric, hyperbolic, and logarithmic functions: their definitions and basic properties and inverse functions). Branches of logarithmic functions. Contours and contour integration. The Cauchy- Goursat theorem. Simply and multiply connected regions. The Cauchy integral formula. Morera's Theorem. Maximum modulus principle. Entire functions and Liouville's theorem.				
Math 404412	Complex analysis (2)	Compulsory major	С	omplex analysis (1)	3
Course Description	geometry, ster analytic and l	ceographic proj harmonic funct	jection ions, co	wing topics: The compl and linear fractional t ontour integration, Cau cial functions and confo	ransformations, uchy's theorem,
Math 404131	Probability and Statistics (1)	College Requirement		-	3
Course Description	Probability; a probability, i expectation, estimation: for the ratio of	axioms of pro ndependence. I probability di r mean and van two variances, nples, correlatio	obabilit Discreto stribut riance, , testin	ollowing topics: Descr y, rules of probabili e and continuous ran ions. Sampling distri the difference between ag hypotheses for sma ple linear, and multiple	ity, conditional dom variables, ibutions. Point two means and all, large, and

Course No.	Course Title	Designation	Prerequisite	Credit Hours
Math 404311	Real Analysis I	Compulsory maj	jor Set Theory	3
Course Description	that develops t context of real set theory. The convergence, s sets of real num	The foundations for this work are commenced in Real Analysis, a course that develops this basic material in a systematic and rigorous manner in the context of real-valued functions of a real variable. Topics covered are: Basic set theory. The real numbers and their basic properties. Sequences: convergence, subsequences, Cauchy sequences. Open, closed, and compact sets of real numbers. Continuous functions and uniform continuity. Differentiation and Mean Value theorems.		
Math 404411	Real Analysis II	Compulsory major	Real Analysis I	3
Course Description	continuity, ser	ies, Riemann integ	tals of mathematical ana gral, sequences and serie of limit operations.	•
Math 404421	Numerical Analysis II	Compulsory major	Numerical Analysis I	3
Course Description	integration, li		ction to interpolation n factorizations, and nun	<i>,</i>
Math 404202	Median Analysis	Compulsory major	Calculus III	3
Course Description	, Triple integ coordinates, V in multiple in	rals, Cylindrical fector fields, Line i tegrals, Green's t their areas, : S	cals, Double integrals in coordinates, Triple inte ntegrals, Surface area, C heorem, Curl and diver urface integrals, Stoke	grals in spherical change of variables gence. Parametric

Course No.	Course Title	Designation	Prerequisite	Credit Hours
Math 404251	Set Theory	Compulsory major	Foundation of mathematics	3
Course Description	As stated in the approved study plan. Introduction and paradoxes; axioms of set theory; equivalence relations and functions; partially ordered classes; lattices; well-ordered classes; the axiom of choice and related cardinals and ordinals.;principles; Dedekind cuts.			
Math 404345	Number Theory	Compulsory major		3
Course Description	common divise numbers and t congruence; lin divisibility. Fe	As stated in the approved study plan. Division algorithm; divisibility; greatest common divisor and least common multiple; Diophentine equations; prime numbers and their distribution; fundamental theorem of arithmetic; congruence; linear congruence equations; Chinese remainder theorem; tests of divisibility. Fermat little theorem; Wilson's theorem; arithmetic functions; cryptography as an application of number theory.		uations; prime thmetic; r theorem; tests of

Course No.	Course Title	Designation	Prerequisite	Credit Hours
Math 404362	Topology (1)	Compulsory major	Set theory	3
Course Description	Subspaces, Clo Basis Definitio and examples problems, Cor property. Com	osure of a set, Interior, on and examples. Finite of the metrics, metric s ntinuous functions, and npactness, compactness	amples Open and close boundary , exterior and product topology. Subl paces , Hausdorff space homeomorphisms, topo in nY , Limit point con ctness in metric spaces.	d derived sets basis Definition es ,metrizability ological npactness,

Math 203462	Topology (2)	Compulsory major	Topology (1)	3
Course Description	them. Compac some related t	et spaces and some re heorems. Metric spa	ome examples and theoren elated theorems. Connecte ces and some related exan vergence in topological sp	ed spaces and nples and

Course No.	Course Title	Designation	Prerequisite	Credit Hours
	Biostatistics	Biostatistics College		
Math 404115	College	Requirement		3
	Requirement			C C

Course Description	Biostatistics is essential to ensuring that findings and practices in public health and biomedicine are supported by reliable evidence. This course covers the basic tools for the collection, analysis, and presentation of data in all areas of public health. Central to these skills is assessing the impact of chance and variability on the interpretation of research findings and subsequent recommendations for public health practice and policy.
-----------------------	---

Course No.	Course Title	Designation	Prerequisite	Credit Hours				
Math 404101	Calculus I	College Requirement	-	3				
Course Description	includes the fo differentiating and increasing L'Hôpital's ru Rolle 's Theor rational functi antiderivatives	llowing topics: limits; o ; differentials and loca ; functions; maximum a lle, related rates; logari em; the mean-value the ons (asymptotes) and f s; the indefinite integra	continuity; rates of chan l linear approximations and minimum value of f thmic and implicit diffe eorem; graphs of functions with vertical ta	This course is concerned with studying single-valued functions, and it includes the following topics: limits; continuity; rates of change; rules for differentiating; differentials and local linear approximations; decreasing and increasing functions; maximum and minimum value of functions; L'Hôpital's rule, related rates; logarithmic and implicit differentiation; Rolle 's Theorem; the mean-value theorem; graphs of functions including rational functions (asymptotes) and functions with vertical tangents (cusps); antiderivatives; the indefinite integral; the definite integral; the				

	curves; transcendental functions: inverse functions, logarithmic and exponential functions and their derivatives and integrals; limits (the indeterminate forms); hyperbolic functions and their inverses; inverse trigonometric functions; some techniques of integration.				
Math 404231	Probability and Statistics (2)	Compulsor major	·y	Probability and Statistics (1)	3
Course Description	In this course we focus on inferential statistics, especially the estimation and testing of statistical hypotheses and the topics will be: confidence Intervals for the Mean when σ s is known and the calculation of sample size, confidence interval for the mean when σ is unknown, confidence Intervals and sample Size for Proportions, confidence intervals for variances, steps in Hypothesis Testing—Traditional Method by z- test and t- test for a mean, z- test for a Proportions and χ^2 - test for a variance or standard deviation, testing the difference between two means: using the z test and t –test, testing the difference between two means: dependent samples, testing the difference between two variances.				
Math 404301	Operation Researches	Compulsory major		Fundamental of hematics and Linear Algebra	3
Course Description	In this course, we introduce the following topics: Linear programming (LP), LP definition, expressing LP problems, limitations or constraints, maximization and minimization problems; linear Programming – Graphical Solutions, introduction to graphical LP maximization solution, graphical LP minimization solution, Simplex method definition, formulating the Simplex model. linear Programming; Simplex Method: Simplex method for Maximizing, Simplex maximizing example for similar limitations, Mixed limitations, example containing mixed constraints, Minimization example for similar limitations, example for similar limitations, Duality Theory; sensitivity analysis: changes in objective function, changes in RHS; the transportation model basic assumptions, solution methods: 1. Feasible Solution: The Northwest Method, The Lowest				

	Cost Method, 2.Optimal Solution: The Stepping Stone Method, Modified Distribution (MODI) Method.			
Math 404442	Abstract Algebra (II)	Compulsory major	Abstract Algebra (I)	3
Course Description	In this course we introduce the following topics: Rings, subrings, integral domains, factor rings and ideals. Ring homomorphisms; polynomial rings; factorization of polynomials; reducibility and irreducibility tests; divisibility in integral domains; principal ideal domains and unique factorization domains.			

Course No.	Course Title	Designation		Prerequisite	Credit Hours
Math 404241	Linear Algebra (1)	College Requirement		-	3
Course Description	Systems of linear equations; matrices and matrix operations; homogeneous and nonhomogeneous systems; Gaussian elimination; elementary matrices and a method for finding A–1; determinants; Euclidean vector spaces; linear transformations from R n to R m and their properties; general vector spaces; subspaces; basis; dimension; row space; column space; null space of a matrix; rank and nullity; inner product spaces; eigenvalues and diagonalization; linear transformations.				
Math 404201	Calculus (3)	Compulsory major		Calculus (2)	3
Course Description	Study the sequences. L'Hopital's rule. Improper integrals. infinite series, convergence and divergence, convergence tests, Maclaurin and Taylor series and. vectors: dot product, projections, cross product; parametric equations of lines; planes in 3-space; vector valued functions: calculus of vector valued functions, change of parameters, arc length, unit tangent and normal vectors.				
Math 404342	Abstract Algebra (I)	Compulsory major		Fundamental of Mathematics	3
Course Description	This course covers properties of integers, sets, groups, permutation groups, cyclic groups, Lagrange, s Theorem, subgroups, normal subgroups, quotient groups, external direct product of groups, homomorphism and isomorphism of groups, and introduction to rings and fields.,.				

N	1ath 404261	Euclidean geometry	Compulsory major	Se t theory	3
1	Course Description	ِحِتَّ ، السواًا ، . عَلَى النَطْابِق افـوُ المِثْالِثَاثَ	: نطابق القطع المستة المثلثاث ، نطبةات ع راذِ الضالع ، نك	ڧلٍدِش: نظام هندست إڧلٍدِش ونڧائصها ، مك مسلمات هليرث ، الهندست المحادّدة النطابق عاث ، المثلاثات ، نطب ق على النشابه رازي ومتىازدّات األضالع ، النكافيز ، نكافيز متر ددّت : الهندست السائددّت ، . الدائرة ، ال	النظام الرّاضَ ، النشابه : نشابه المضل الدائرة : أوتار . النم

Math 404321	Numerical Analysis 1	Compulsory major		3
Course Description	problems. It approximatio It covers co interpolation	deals with t n techniques omputer arith and appron n, solution	erical methods for solving he theory and application as well as their computer im metic, solution of nonline oximation, numerical int of differential equations,	of numerical plementation. ar equations, egration and