

3.3 وصف المساقات

FACULTY REQUIREMENTS: (21 CREDIT HOURS)

COMPULSORY FACULTY REQUIREMENTS: (15 CREDIT HOURS)

Course Name:	Introdu	uction to IT		Course Code:	401102
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	
	3	3	1		

This course gives the basic concepts of computers and information technology, both physical and programmatic, and includes: an introduction to physical and programmatic computer components, counting systems, and methods of data representation. Stages of software development, application software and system software, focusing on foundations and methods of problem solving and algorithm design. Introduction to C ++ programming language and includes: program structure in C ++ language, basic data types, arithmetic and logical operations, control structures in addition to previewing and compiling software

Course Name:	Computer Skill (2)			Course Code:	401115		
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	Introduction to IT		
	3	3	1				
This course covers the basic concepts of a programming language using C++, and includes:							
Development of major	program	ming languag	es. Descript	tion of sentence structure	and their		
implications, analysis of	implications, analysis of sentence structure and construction, names of variables, and includes: linking,						
verification of type and sphere of influence. Data types, expressions, data references and control							
sentence structures.							

Course Name:	Programming Language (1)			Course Code:	401211		
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	Computer Skill (2)		
	3	3	1				
The basic skills of writ	The basic skills of writing and debugging code using a common programming language (e.g., the C++						
or Java programming la	or Java programming language), an integrated development environment (IDE) (e.g., MS Visual						
(VC++) development studio), data types, arithmetic and conditional operators, control structures,							
functions, parameter passing by value and by reference and arrays							

Course Name:	Calculus (1)			Course Code:	404101
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	
	3	3	0		
and exponential function techniques, chain rule, increasing and decrease	ons; inver implicit ing jobs; efinite in	rse trigonome differentiation concavity; Ma tegral. Fundar	tric function ; the different aximum and	nctions, trigonometric, i ns; continuity limits. De- ences. Rolle's Theory, K 1 minimum function val prem of Calculus. Integr	rivative: differentiation ey Value Theory; ues, graphs including

Course Name:	Statistics & Probability (1)			Course Code:	404131
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	
	3	3	0		
conditional probability probability distribution for mean and variance,	, indepen s. Sampl differend	dence. Discre ing distribution ce between tw	te and cont ons t, Chi sc o means an	r; Axioms of probability, inuous random variables, uare, F, CLT distribution d percentage of variance le and multiple linear reg	, expectations, and ns. Score estimation: s, hypothesis testing

ELECTIVE FACULTY REQUIREMENTS: (6 CREDIT HOURS)

Course Name:	Linear Algebra (1)			Course Code:	404241	
Hours:	Credit Theoretical Practical		Pre-Requisite:	Calculus (1)		
	3	3	0			
System of linear equations, matrices, determinants, vector space in the second and third dimensions,						
non-vector multiplication, vector multiplication, general vector space, subspaces, linear independence,						
base and dimension, orthogonal basis, (Gram-Smith) operations, base change, linear transformations.						

Modeling & Simulation			Course Code:	401452		
Credit	Theoretical	Practical	Pre-Requisite:	Statistics &		
3	3	0		Probability (1)		
This course discusses different topics in simulation and modeling, such as the uses, advantages and						
ation, typ	es of models,	the steps in	n discrete-event system s	imulation, statistical		
models, simple queuing models, random numbers and random variates, input modeling, model						
verification and validation, and its use in input-output analysis. Sample implementations for queuing						
system simulations are discussed using selected languages.						
	Credit 3 lifferent t ation, typ g models, ion, and	CreditTheoretical33lifferent topics in simuation, types of models,g models, random numion, and its use in input	CreditTheoreticalPractical330lifferent topics in simulation and r ation, types of models, the steps in g models, random numbers and ra ion, and its use in input-output an	CreditTheoreticalPracticalPre-Requisite:3300lifferent topics in simulation and modeling, such as the use ation, types of models, the steps in discrete-event system s g models, random numbers and random variates, input mod ion, and its use in input-output analysis. Sample implement		

Course Name:	Progra	mming Lang	uages	Course Code:	401452
	Design	& Implemen	tation		
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	Programming
	3	3	0		Language (1)
This course will acqu	aint the stu	udent with the	fundament	al ideas surrounding the	design and
implementation of high-level programming languages. The course will stress underlying theoretical					
concepts as well as a significant, practical course project. At the same time, the course will focus on					
making this material	accessible	to students of	varied bac	kgrounds.	

Course Name:	Graph Theory			Course Code:	404463		
Hours:	Credit	Theoretical	Practical	Pre-Requisite:	Linear Algebra (1)		
	3	3	0				
The course treats grap	The course treats graph theoretical notions and problems, and the use of algorithms, both in the						
mathematical theory of graphs and its applications. In the course, the basic theory of graphs of different							
kinds is developed in a	kinds is developed in detail, especially trees and bipartite graphs.						

DEPARTMENT REQUIREMENTS: (81 CREDIT HOURS)

COMPULSORY DEPARTMENT REQUIREMENTS: (66 CREDIT HOURS)

Unit Number	Credit hours	Title of the unit	prerequisite				
401115	3	Introduction to Algorithms 401112 Computer skills					
complexity collision in representation	This unit will cover the following contents: Solving summations and recurrences, Efficiency and complexity analysis, Tree terminology and algorithms, Binary trees, Hashing methods and solving collision in hashing, Heaps and heap sort, Insertion sort, merge sort and quicksort, Graph terminology, representation, and algorithms, Algorithms of Prim, Kruskal, Dijkstra and Floyd. Breadth-first and						
depth-first s	earch, The gre	eedy, divide-and conquer, and dynamic programming	techniques.				

Unit Number	Credit hours	Title of the unit	prerequisite			
401215	3	Object oriented programming	401211 Programming language 1			
This unit will cover the following contents: Introduction to computer programming for Windows using C#.						

This includes C# syntax, basics of C# classes, interfaces, exception handling, assemblies, .NET collections, Windows Forms, and relational database programming.

Unit Number	Credit hours	Title of the unit	prerequisite				
401251	3	Data Structures	401112 Computer skills 2 (Faculty of Science students)				
	The main core components will be based on the following:						
 Principles of data design. Data types and structures. Abstract data types (ADTs) and encapsulation. 							
 Unsorted List and Sorted List ADTs. Stack and Queue ADTs. Linked structures. Implementing Unsorted Lists. Sorted Lists. Stacks and Queues as linked structures. Programming with 							

3. Unsorted Lists, Sorted Lists, Stacks and Queues as linked structures. Programming with recursion.

4. Binary Search Trees.

Unit Number	Credit hours	Title of the unit	prerequisite
409231	3	Algorithms of Data Science and Artificial Intelligence	401115 Introduction to Algorithms And 401453 Artificial Intelligence

The main focus will be bases on the following:

- 1. Formal techniques of the design and analysis of algorithms.
- 2. Asymptotic analysis of upper and average complexity bounds.
- 3. Empirical measurements of performance; time and space tradeoffs in algorithms.
- 4. Correctness and finiteness of algorithms.
- 5. Algorithmic strategies: Brute-force, greedy, divide-and-conquer, backtracking, branch-and-bound, heuristics, pattern matching and string/text algorithms.

Implementation strategies for Graph, Network and Tree algorithms.

Unit Number	Credit hours	Title of the unit	prerequisite
401332	3	Operating Systems	401112 Computer skills 2 (Faculty of Science students
This unit wi	11 focus on the	following parts:	

- 1. Operating system fundamentals.
 - Operating system funda
 Memory management.
 - 2. Memory managemen
 - 3. Virtual memory.
 - 4. Multiprogramming. Resource scheduling and allocation. CPU scheduling.
 - 5. Tasks management and synchronization.
 - 6. Deadlock management. Secondary storage management and file handling.
 - 7. System security and protection.

Unit Number	Credit hours	Title of the unit	prerequisite		
409101	3	Data Science Principles	401102 Introduction to Information Technology		
	This unit will cover and the student is expected to understand the following:Introduction to Data				
Science, Big data, Python programming (Pycharm IDE), Data Science process, Statistics and					
mining, Ma	chine learning	g, Supervised Machine learning, Machine learning, U	nsupervised Machine		
Unit Number	Credit hours	Title of the unit	prerequisite		
409441	3	Big Data	409341 Data Engineering		

The unit will focus on the following:

- 1. Basics of Programming in Data Science.
- 2. Advanced Concepts of Programming. Integration and Testing. SDLC and Agile Methodology. Object-Oriented Design. ...
- 3. Big Data Fundamentals.
- 4. Advanced Concepts of Big Data. Large Scale Data Processing. ETL and Data Ingestion. NoSQL Databases.

Unit Number	Credit hours	Title of the unit	prerequisite
409120	3	Artificial Intelligence	409101 Data Science Principles
problems by	v searching, A	llowing main core contents: Introduction to introduct I Real world problems, Genetic Algorithm, Beyond c wledge representation and expert systems	

Unit Number	Credit hours	Title of the unit	prerequisite
409112	3	Artificial Intelligence Programming	409101 Data Science Principles
data types a Functions a	nd lists, Work nd classes, Fil	gramming unit, core components :Introduction to Pyting with lists and if statements, Dictionaries, user inpes, exception and testing, After this course, students art their projects in Python programming language.	ut and while loops,

Unit Number	Credit hours	Title of the unit	prerequisite
409223	3	Data Science Programming	409112 Artificial Intelligence programming
This course will focus on the following :			

- 1. Introduction to Data Mining, Classification, Clustering, Association Rule Discovery, Anomaly
- 2. Detection, Web Mining, Collaborative Filtering, and various data mining topics

This unit will focus on the following:

- 1. providing students with the skills necessary to use Python for data analysis in scientific computing.
- 2. In particular the course will cover with Python: The NumPy package for scientific computing.
- 3. The Pandas data analysis library, including reading and writing of CSV files.
- 4. The IPython and PyDev development environments.
- 5. The Matplotlib 2D plotting library.
- 6. The course will also provide an introduction to best-practice software engineering techniques and Unix command line tools.

Unit Number	Credit hours	Title of the unit	prerequisite
409221	3	Machine Learning	409112 Artificial Intelligence programming

This course provides a broad introduction to machine learning. Main components include:

- 1. supervised learning (generative/discriminative learning, parametric/non-parametric learning, neural networks, and support vector machines);
- 2. unsupervised learning (clustering, dimensionality reduction, kernel methods); learning theory (bias/variance tradeoffs, practical advice); reinforcement learning and adaptive control.

Unit Number	Credit hours	Title of the unit	prerequisite		
409222	3	Neural Networks	409221 Machine Learning		
	This course provides a broad introduction to Neural Networks. Main components include: 1. This includes single- and multi-layer perceptrons; radial-basis function networks; support				
vector machines; stochastic machines and deep networks; recurrent and dynamic networks; supervised and unsupervised learning; application to pattern classification and function					
-	approximation problems.				

Unit Number	Credit hours	Title of the unit	prerequisite
409241	3	Database	401251 Data Structures
This course provides a comprehensive concepts of :			

This course provides a comprehensive concepts of :

1. The relational database design and SQL (implemented in Oracle) used with relational databases.

2. The presentation stresses at relational data model; relational algebra; SQL; database analysis and design; ER and enhanced modelling; data normalization. Programming language.

Unit Number	Credit hours	Title of the unit	prerequisite
409322	3	Deep Learning	409222 Neural Networks

This unit will focus on the following:

1. An introduction to deep learning.

2. This includes supervised and unsupervised learning, linear and logistic regression, continuous optimization, generalization theory and over fitting, regularizes, and probabilistic modeling.

Unit Number	Credit hours	Title of the unit	prerequisite		
409211	3	Knowledge based system	409210 Knowledge Representation and reasoning		
This unit wi	ill focus on the	e following:			
1. Intr	oduction to ex	pert systems: definition and applications.			
2. Cha	racteristics of	expert systems.			
3. Kno	3. Knowledge representation. Inference methodologies.				
4. Rul	4. Rule-based and production systems. Forward and backward inference systems.				
5. Fuz					

6. Frame-based systems. Natural language understanding systems.

Unit Number	Credit hours	Title of the unit	prerequisite
409341.	3	Data Engineering	409255 DataBase

The unit will focus on the following:

- 1. Managing extracting, transforming and loading (ETL) data.
- 2. This course will explain the data life cycle in a Data science project covering data types, such as structured, semi structured and unstructured and the different formats of data and techniques used in the ETL process. It also takes the student through staging, profiling, cleansing, and migrating data as well as insight exploration using basic visualization techniques.

Unit Number	Credit hours	Title of the unit	prerequisite
409432	3	Natural Language Processing	409322 Deep learning

The unit will focus on the following:

- 1. An introduction to Natural Language Processing.
- 2. The study of Computing systems that can process, understand, or communicate in human language.
- 3. The primary focus of the course will be on understanding various NLP tasks, algorithms for effectively solving these Problems, and methods for evaluating their performance.

Unit Number	Credit hours	Title of the unit	prerequisite		
409232	3	Visual programming	401112 Computer skills 2 (Faculty of Science students unit)		
This course	will cover the	following:			
	1. The student must be able to create programs by manipulating program elements graphically rather than defining them textually.				
	2. Programming using visual expressions and spatial arrangements of text and graphic symbols, which are used either as syntax elements or secondary notation.				
	3. Data flow or diagrammatic programming.				
	 Data now of diagrammatic programming. To create "boxes and arrows", where squares or other screen elements are treated as entities connected by arrows, lines, or arcs representing relationships 				

Unit Number	Credit hours	Title of the unit	prerequisite
409431	3	Computer Vision	409322 Deep learning
	ill cover the fo	llowing:	

- Students will learn fundamentals of image formation, camera imaging geometry, feature 1. detection and matching. Algorithms of stereo, motion estimation and tracking, image classification, with neural networks will be deeply address in this course.
- 2. The topics of object detection and tracking will be taught to students.
- 3. It aims to cover a wide understanding of different related topics, such as pattern recognition systems, pre-processing and feature extraction, supervised and unsupervised learning, object classification and recognition.

Unit Number	Credit hours	Title of the unit	prerequisite	
409311	3	Robotics	409211 Knowledge based systems	
The nurnose	The purpose of this course is to :			

of this course is to :

- 1. To introduce the student to basics of modeling, design, planning, and control of robot systems. In particular, the material treated in this course is a brief survey of relevant results from geometry, kinematics, statics, dynamics, and control.
- 2. The course enriches the student with the needed algorithms for robotics related problems.

Unit Number	Credit hours	Title of the unit	prerequisite		
409343	3	Information Retrieval	409255 Knowledge bases systems		
1. Inti	 This course includes the following topics: 1. Introduction to Information Retrieval, Basic Techniques of information retrieval, Tokens and Terms, Static Inverted Indices, Query Processing, 				
	 Index Compression, Dynamic Inverted Indices, Probabilistic Retrieval, Measuring Effectiveness, Web Search. 				

Unit Number	Credit hours	Title of the unit	prerequisite
409210	3	Knowledge Representation and reasoning	404152 Discrete Mathematics
includes str	uctured knowl	dents to the main concepts of cognitive and knowledg edge representations, as well as knowledge-based me n-making, and learning.	•

Unit Number	Credit hours	Title of the unit	prerequisite
409442	3	Advanced AI	409311 Robotics
		ced technologies of artificial intelligence. This include ent learning; Knowledge Representation; and Reason	5

Unit Number	Credit hours	Title of the unit	prerequisite
409443	3	AI and Machine Learning Applications	409322
AI. This inc	ludes applying ng (web searcl	dents to the bias/variance theory; innovation process i g learning algorithms to building smart robots (percep h, anti-spam), computer vision, medical informatics, a	tion, control), text

Unit Number	Credit hours	Title of the unit	prerequisite
409113	3	Cognitive Computing	401453

This course aims to introduce students to the basic concepts and methodology needed to implement and

analyze computational models of cognition. It considers the fundamental issues of using a computational approach to explore and model cognition. In particular, we explore the way that computational models relate to, are tested against, and illuminate psychological theories and data. The course will introduce both symbolic and sub-symbolic modelling methodologies, and provide practical experience with implementing models. The symbolic part will focus on cognitive architectures, while the sub-symbolic part will introduce probabilistic models.

Unit Number	Credit hours	Title of the unit	prerequisite	
409444	3	Selected Topics in AI (1)		
This course covers selected topics in current research and advancements in various AI fields.				

Unit Number	Credit hours	Title of the unit	prerequisite	
409445	3	Selected Topics in AI (2)	409445	
This course covers selected topics in current research and advancements in various AI fields.				
l				

Unit Number	Credit hours	Title of the unit	prerequisite
409471	3	Practical Training	Last year Training

The student is required to do:

- 1. practical training in a well-known software company for a period of (2) months, fulltime training, with at least (6) hours per day, or 3 months part-time training with at least (4) hours per day.
- 2. In addition to training hours, for the part-time training, the student is allowed to register not more than (10) credit hours in the first or the second semester, or (4) credit hours in the summer semester.
- 3. The student is required to perform tasks that are related to his major, such as writing, developing, or learning some new software.